
182
IntelIgencIa artIfIcIal en el pronóstIco de ventas: revIsIón IntelIgencIa artIfIcIal en el pronóstIco de ventas: revIsIón
sIstemátIca de la lIteratura cIentífIca (2018-2024)sIstemátIca de la lIteratura cIentífIca (2018-2024)
Romero, R., Espinoza, L., Mantilla, G.
YACHANA Revista Cientíca, vol. 14, núm. 2 (julio-diciembre de 2025), pp. 170-184
learning models. American Journal of Sta-
tistics and Actuarial Sciences, 6(1), 35–67.
https://doi.org/10.47672/ajsas.2679
Darbanian, F. (2023). Applying Machine
Learning in Retail Demand Prediction—A
Comparison of Tree-Based Ensembles and
Long Short-Term Memory-Based Deep
Learning. Applied Sciences, 13(19), 11112.
https://doi.org/10.3390/app131911112
(2016). A hybrid neural network model
for sales forecasting based on ARIMA and
search popularity of article titles. Com-
putational Intelligence and Neuroscien-
ce, 2016, Article ID 9656453. https://doi.
org/10.1155/2016/9656453
M. M., Li, T., Loder, E. W., Mayo-Wil-
son, E., McDonald, S., McGuinness, L.
C., Welch, V. A., Whiting, P., & Moher, D.
(2021, April). The PRISMA 2020 state-
ment: An updated guideline for reporting
systematic reviews. International Jour-
nal of Surgery, 88, 105906. https://doi.
org/10.1016/j.ijsu.2021.105906
Time series forecasting and modeling
of food demand supply chain based on
regressors analysis. IEEE Access, 11,
42679-42700. https://doi.org/10.1109/AC-
CESS.2023.3266275
Prabu, C. R., Ravindran, R., Varma, K.
S. A., Sri, K. S., Rohith, G. S., & Remya,
M. S. (2025). Comprehensive Review on
Sales Prediction Models. Procedia Com-
puter Science, 259, 1218-1227. https://doi.
org/10.1016/j.procs.2025.04.077
& Alfonso-Morales, W. (2023). Demand
forecasting using a hybrid model based
case on electrical products. Journal of In-
dustrial Engineering and Management,
16(2), 363–381. https://doi.org/10.3926/
jiem.3928
Raj, R., Rohit, R., Shahreyar, M., Raut,
-
algorithm. Microprocessors and Microsys-
tems, 90, 104485. https://doi.org/10.1016/j.
micpro.2022.104485
Ribeiro, M. T., Singh, S., & Guestrin, C.
-
el-Agnostic Explanations. Proceedings
of the AAAI Conference on Articial In-
telligence, 32(1), 1527–1535. https://doi.
org/10.1609/aaai.v32i1.11491
Rolnick, D., Donti, P. L., Kaack, L.Kaack,
-
cioni, A. S., Maharaj, T., Sherwin, E. D.,
Mukkavilli, S. K., Kording, K. P., Gomes,
Y. (2022). Tackling climate change with
machine learning. ACM Computing Sur-
veys, 55(2), Article 42, 1–96. https://doi.
org/10.1145/3485128
Enhancing Predictive Sales Analytics us-
ing LSTM Networks and Random Forest
Algorithms. https://eaaij.com/index.php/
eaaij/article/view/40/40