Análisis del estrés de transferencia de la secuencia de terremotos deTurquía, Mw7. 8 y Mw 7. 5, 2023

Autores/as

  • Amilcar Wilfrido Carrera-Cevallos Investigador independiente

DOI:

https://doi.org/10.62325/10.62325/yachana.v12.n2.2023.891

Palabras clave:

Sismo, terremoto, ingeniería sísmica

Resumen

Este documento relata los cambios que se han obtenido en los dos grandes terremotos que han azotado a Turquía con diferentes epicentros. El 6 de febrero 2023, se produjo un terremoto de Mw = 7.8 al sur de Turquía, con epicentro cerca de la frontera norte de Siria. Este evento telúrico tuvo un segundo terremoto 9 horas más tarde, por un movimiento de Mw =7.5 alrededor de 90 km al norte. El Mw= 7.8 y las réplicas inscritas se las puede encontrar en la zona de transición de fallas dos falla: Mar Muerto y Oriental de Anatolia. El terremoto con su ubicación preliminar se lo coloca en las cercanías de una triple unión: Placa Arábiga y africana y por último el bloque de Anatolia. Esta última falla adapta el movimiento hacia el oeste de Turquía hacia el Mar Egeo, por otro lado, la falla del Mar Muerto adecúa el movimiento hacia el norte de Arabia en su península con relación a la placa africana. Evento que rompió una brecha sísmica de más de 200 kilómetros de largo y 40 kilómetros de ancho. El objetivo es de contribuir y dar a comprender el papel del estrés de transferencia de la secuencia de terremotos en evolución de Turquía. El uso de instrumentos y conocimientos estadísticos permitieron pronosticar la distribución futura de réplicas y así poner a consideración la posibilidad de terremotos primarios ulteriores; siendo un punto de partida para futuros terremotos de igual o mayor magnitud.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Akbayram, K., Bayrak, E., Pamuk, E., Özer, Ç., Kıranşan, K., & Varolgüneş, S. (2022, June 16). Dynamic sub surface characteristic and the active faults of the Genç District locating over the Bingöl Seismic Gap of the East Anatolian Fault Zone, Eastern Turkey [Ab- stract]. Natural Hazards,114, 825– 847. https://t.ly/tUkC

Akgün, E., & İnceöz, M. (2021). Tectonic evolution of the central part of the East Anatolian Fault Zone, Eastern Turkey. Turkish Journal of Earth Sciences, 30(7), 928–947. https://t.ly/EXJaI

Altunel, E., Meghraoui, M., Karabacak, V., Akyüz, S. H., Ferry, M., Yalçıner, Ç., & Munschy, M. (2009, December 9). Archaeological sites (Tell and Road) offset by the Dead Sea Fault in the Amik Basin, Southern Turkey. Geophysical Journal International, 179(3), 1313–1329. https://t.ly/tgKs

Arpat, E., & Şaroğlu, F. (1972). The East Anatolian fault system: Thoughts on its development. Bulletin of the Mineral Research and Exploration Institute of Turkey, 78, 33–39. https://t.ly/0xIeX

Balkaya, M., Ozden, S., & Akyüz, H. S. (2021). Morphometric and Morphotectonic characteristics of Sürgü and Çardak Faults (East Anatolian Fault Zone) [Abstract]. Journal of Advanced Research in Natural and Applied Sciences, 7(3), 375-392. https://t.ly/8LAu

Balun, B., Nemutlu, Ö., Benli, A., & Sari, A. (2020, February 25). Estimation of probabilistic hazard for Bingol province, Turkey [Abstract]. Earthquakes and Structures, 18(2), 223-231. https://t.ly/LuKW

Barbot, S., Luo, H., Wang, T., Hamiel, Y., Piatibratova, O., Javed, M. T., Braitenberg, C., & Gurbuz, G. (2023). Slip distribution of the February 6, 2023 Mw 7.8 and Mw 7.6, Kahramanmaras, Turkey earthquake sequence in the East Anatolian Fault Zone [Data set]. Zenodo. https://t.ly/qhJlE

Bletery, Q., Cavalié, O., Nocquet, J.-M., & Ragon, T. (2020, August 17). Distri- bution of Interseismic Coupling Along the North and East Anatolian Faults Inferred from InSAR and GPS Data. Geophysical Research Letters, 47(16), 1-11. https://t.ly/cHEQx

Bird, P., & Kreemer, C. (2015, February). Revised Tectonic Forecast of Global Shallow Seismicity Based on Version 2.1 of the Global Strain Rate Map. Bulletin of the Seismological Society of America, 105(1), 152–166. https:// n9.cl/u0ll0

Bonita, J., Kumagai, H., & Nakano, M. (2015). Regional Moment Tensor Analysis in the Philippines: CMT Solutions in 2012–2013. Journal of Disaster Research, 10(1), 18–24. https://t.ly/LWg1

Cheloni, D., & Akinci, A. (2020, November). Source modelling and strong ground motion simulations for the 24 January 2020, Mw 6.8 Elazığ earth- quake, Turkey [Abstract]. Geophysical Journal International, 223(2), 1054- 1068. https://t.ly/YaHE

Chen, K., Zhang, Z., Liang, C., Xue, C., & Liu, P. (2020, November). Kinematics and Dynamics of the 24 January 2020 Mw 6.7 Elazig, Turkey Earthquake. Earth and Space Science, 7(11), 1-8. https://t.ly/6Dyz1

Coban, K. H., & Sayil, N. (2020). Different probabilistic models for earthquake occurrences along the North and East Anatolian fault zones [Abstract]. Arabian Journal of Geosciences, 13, 971. https://t.ly/Hjyj

Di Sarno, L., & Pugliese, F. (2021, April 1). Effects of mainshock aftershock sequences on fragility analysis of RC buildings with ageing. Engineering Structures, 232, 111837. https://t.ly/ kIeb

Dogan, G., Ecemis, A. S., Korkmaz, S. Z., Arslan, M. H., & Korkmaz, H. H. (2021, June 14). Buildings Damages after Elazığ, Turkey Earthquake on January 24, 2020 [Abstract]. Natural Hazards, 109, 161-200. https://t.ly/ My2C

Doğangün, A., Ural, A., Sezen, H., Güney, Y., & Fırat, F. (2013). The 2011 Earthquake in Simav, Turkey and Seismic Damage to Reinforced Concrete Buildings. Buildings, 3(1), 173–190. https://t.ly/c7Hod

Doğru, A., Bulut, F., Yaltırak, C., & Aktuğ, B. (2021, January). Slip distribution of the 2020 Elazığ Earthquake (Mw 6.75) and its influence on earthquake hazard in the Eastern Anatolia [Abstract]. Geophysical Journal International, 224(1), 389–400. https://t.ly/BcgS

Duman, T. Y., & Emre, Ö. (2013). The East Anatolian Fault: geometry, seg- mentation and jog characteristics. Geological Society, London, Special Publications, 372(1), 495–529. https:// shorturl.at/iwZ29

Gallovič, F., Zahradník, J., Plicka, V., Sokos, E., Evangelidis, C., Fountou- lakis, I., & Turhan, F. (2020). Complex rupture dynamics on an immature fault during the 2020 Mw 6.8 Elazığ earthquake, Turkey. Communications Earth & Environment, article number 40, 1-8. https://shorturl.at/hBDM2

Güvercin, S., Karabulut, H., Konca, A. Ö., Doğan, U., & Ergintav, S. (2022, July). Active seismotectonics of the East Anatolian Fault [Abstract]. Geophysical Journal International, 230(1), 50–69. https://shorturl.at/ilEPY

Işık, S. E., Özgun, A., & Karabulut, H. (2017, April). The seismic interactions and spatiotemporal evolution of seismicity following the October 23, 2011 Mw 7.1 Van, Eastern Anatolia, earthquake. Tectonophysics, 702, 8–18. https://shorturl.at/dBQTZ

Işık, E., Kutanis, M., & Bal, İ. E. (2016). Displacement of the Buildings According to Site Specific Earthquake Spectra. Periodica Polytechnica Civil Engineering, 60(1), 37–43. https://t. ly/7gdSg

Izgi, G., Eken, T., Gaebler, P., Eulenfeld, T., & Taymaz, T. (2020, February). Crustal seismic attenuation parameters in the western region of the North Anatolian Fault Zone [Abstract]. Journal of Geodynamics, 134, 101694. https:// shorturl.at/abpxX

Ji, C., Wald, D., & Helmberger, D. (2002). Source Description of the 1999 Hector Mine, California, Earthquake, Part I: Wavelet Domain Inversion Theory and Resolution Analysis. Bulletin of the Seismological Society of America, 92(4), 1192–1207. https://core.ac.uk/ reader/216167200

Jiang, X., Song, X., Li, T., & Wu, K. (2023, April). Moment magnitudes of two large Turkish earthquakes on February 6, 2023 from long period coda [Abstract]. Earthquake Science, 36(2), 169–174. https://shorturl.at/kvJQT

Köküm, M., & Özçelik, F. (2020). An ex- ample study on re evaluation of historical earthquakes: 1789 Palu (Elazığ) earthquake, Eastern Anatolia, Turkey [Abstract]. Bulletin of the Mineral Research and Exploration, 16(161), 157- 170. https://shorturl.at/qCI15

Lomax, A. (2023). Precise, NLL-SSST-coherence hypocenter catalog for the 2023 Mw 7.8 and Mw 7.6 SE Turkey earthquake sequence [Data set]. Zenodo. https://shorturl.at/jyPVW

Melgar, D., Taymaz, T., Ganas, A., Crowell, B., Öcalan, T., Kahraman, M., Tsironi, V., Yolsal- Çevikbil, S., Valkaniotis,

S., Irmak, T. S., Eken, T., Erman, C., Özkan, B., Dogan, A. H., & Altuntaş, C. (2023). Sub and supershear ruptures during the 2023 Mw 7.8 and Mw 7.6 earthquake doublet in SE Türkiye. Seismica, 2(3), 1-10. https://shorturl. at/iuOP8

Nemutlu, Ö., Balun, B., & Sari, A. (2021). Damage assessment of buildings after 24 January 2020 Elazığ-Sivrice earth- quake [Abstract]. Earthquakes and Structures, 20(3), 325–335. https:// shorturl.at/jMS59

Parra, S. (2023, 9 de febrero). Esta es la razón por la que se producen tantos terremotos entre Turquía y Siria. National Grographic España. https:// shorturl.at/ruzR3

Pousse-Beltran, L., Nissen, E., Bergman, E. A., Cambaz, M. D., Gaudreau, É., Karasözen, E., & Tan, F. (2020, May 30). The 2020 Mw 6.8 Elazığ (Turkey) Earthquake Reveals Rupture Behavior of the East Anatolian Fault. Geophysical Research Letters, 47(13), e2020GL088136. https://shorturl.at/ loFY1

Ragon, T., Simons, M., Bletery, Q., Cavalié, O., & Fielding, E. (2021, Febru- ary 21). A Stochastic View of the 2020 Elazığ M w 6.8 Earthquake (Turkey). Geophysical Research Letters, 48(3), 1-13. https://shorturl.at/jrvyU

Reitman, N. G., Briggs, R. W., Barnhart, W. D., Thompson Jobe, J. A., DuRoss, C. B., Hatem, A. E., Gold, R. D., & Mejstrik, J. D. (2023). Preliminary fault rupture mapping of the 2023 M7.8 and M7.5 Türkiye Earthquakes [Update: 2023, March 15]. https:// shorturl.at/yFLP9

Rekapalli, R., & Gupta, H. K. (2023, Feb- ruary 7). How long the Mw ≥ 5 after- shocks of the 6 February 2023 Mw 7.8 Turkiye earthquake shall continue? [Abstract]. Natural Hazards, 132. https://shorturl.at/eKU89

Rojay, B., Heirman, A., & Toprak, V. (2001, January/May). Neotectonic and volcanic characteristics of the Karasu fault zone (Anatolia, Turkey): The transition zone between the Dead Sea transform and the East Anatolian fault zone. Geodinamica Acta, 14(1–3), 197–212. https://shorturl.at/dgJ34

Rollins, J. & Stein, R. (2010, December). Coulomb stress interactions among M ≥ 5.9 earthquakes in the Gorda deformation zone and on the Mendocino Fault Zone, Cascadia subduction zone, and northern San Andreas Fault. Journal of Geophysical Research, 115(B12), B12306, 1-19. https://shor- turl.at/jqyDP

Shimizu, K., Yagi, Y., Okuwaki, R., & Fukahata, Y. (2020, February). Development of an inversion method to extract information on fault geometry from teleseismic data. Geophysical Journal International, 220(2), 1055–1065. https://shorturl.at/hqtD0

Strader, A., Werner, M., Bayona, J., Mae- chling, P., Silva, F., Liukis, M., & Schorlemmer, D. (2018). Prospective Evaluation of Global Earthquake Forecast Models: 2 Yrs of Observations Provide Preliminary Support for Merging Smoothed Seismicity with Geodetic Strain Rates [Abstract]. Seis- mological Research Letters, 89(4), 1262–1271. https://shorturl.at/bfkGO

Tadapansawut, T., Okuwaki, R., Yagi, Y., & Yamashita, S. (2021, January 16). Rupture Process of the 2020 Caribbean Earthquake Along the Oriente Transform Fault, Involving Supershear Rupture and Geometric Complexity of Fault. Geophysical Research Letters, 48(1), e2020GL090899, 1-9. https:// shorturl.at/dGJNS

Tatar, O., Sözbilir, H., Koçbulut, F., Boz- kurt, E., Aksoy, E., Eski, S., Özmen, B., Alan, H., & Metin, Y. (2020, Oc- tober 27). Surface deformations of 24 January 2020 Sivrice (Elazığ) Doğanyol (Malatya) earthquake (Mw=6.8) along the Pütürge segment of the East Anatolian Fault Zone and its comparison with Turkey’s 100 year surface ruptures [Abstract]. Mediterranean Geoscience Reviews, 2, 385-410. https://shorturl.at/jyFN4

Taymaz, T., Eyidogan, H., & Jackson, J. (1991). Source parameters of large earthquakes in the East Anatolian Fault Zone (Turkey). Geophysical Journal International, 106, 537-550. https://shorturl.at/pRVW2

Taymaz, T., Ganas, A., Yolsal-Çevikbilen, S., Vera, F., Eken, T., Erman, C., Keleş, D., Kapetanidis, V., Valkaniotis, S., Karasante, I., Tsironi, V., Gaebler, P., Melgar, D., & Öcalan, T. (2021, April 5). Source Mechanism and Rupture Process of the 24 January 2020 Mw 6.7 Doğanyol Sivrice Earthquake obtained from Seismological Waveform Analysis and Space Geodetic Observa- tions on the East Anatolian Fault Zone (Turkey) [Abstract]. Tectonophysics, 804, 228745. https://shorturl.at/sGP16

Toda, S., & Stein, R. S. (2020, July 14). Long and ShortTerm Stress Interaction of the 2019 Ridgecrest Sequence and Coulomb Based Earthquake Forecasts [Abstract]. Bulletin of the Seismological Society of America, 110(4), 1765–1780. https://shorturl.at/dfqW2

Toda, S., Stein, R. S., Sevilgen, V., & Lin, J. (2011, October 4). Coulomb 3.3 Graphic-Rich Deformation and StressChange Software for Earthquake, Tectonic, And Volcano Re- search and Teaching User Guide. US Geological Survey Open-File Report 2011-1060. U.S. Department of the Interiors, & U.S. Geological Survey. https://shorturl.at/bkuyT

USGS. (2023a). M7,5 - Elbistan earth- quake, Kahramanmaras earthquake sequence. https://shorturl.at/cmHMX

USGS. (2023b). M7.8 - Pazarcik earthquake, Kahramanmaras earthquake sequence. https://shorturl.at/ehmqG

Xu, J., Liu, C., & Xiong, X. (2020, November). Source Process of the 24 January 2020 Mw 6.7 East Anatolian Fault Zone, Turkey, Earthquake [Abstract]. Seismological Research Letters, 91(6), 3120– 3128. https://shorturl.at/HIMQT

Yaghmaei‐Sabegh, S., Shoaeifar, P., & Shoaeifar, N. (2017, October 1). Probabilistic Seismic‐Hazard Analysis Including Earthquake Clusters. Bulletin of the Seismological Society of America, 107(5), 2367–2379. https://shorturl.at/agkT9

Descargas

Publicado

2023-07-28

Cómo citar

Carrera-Cevallos, A. W. (2023). Análisis del estrés de transferencia de la secuencia de terremotos deTurquía, Mw7. 8 y Mw 7. 5, 2023. Yachana Revista Científica, 12(2), 49–66. https://doi.org/10.62325/10.62325/yachana.v12.n2.2023.891