Inteligencia Artificial en el pronóstico de ventas: Revisión sistemática de la literatura científica (2018-2024)

Autores/as

  • Richard Romero Izurieta Universidad Estatal de Milago
  • Leonardo Roberto Espinoza Roca Universidad de Guayaquil
  • Guido Mantilla Buenaño Universidad Laica VICENTE ROCAFUERTE de Guayaquil

DOI:

https://doi.org/10.62325/10.62325/yachana.v14.n2.2025.1006

Palabras clave:

Venta, inteligencia artificial, aprendizaje, mercados

Resumen

Esta revisión sistemática de la literatura analiza el estado del arte en el uso de inteligencia artificial (IA) para la previsión de ventas en diversos sectores. Aplicando el enfoque PRISMA 2020, se identificaron inicialmente 1.042 registros en bases de datos científicas de alto impacto, de los cuales 25 estudios cumplieron con todos los criterios de inclusión tras un riguroso proceso de selección y evaluación. El análisis cualitativo y cuantitativo revela un crecimiento sostenido en la adopción de técnicas de IA, con especial énfasis en redes neuronales recurrentes, modelos de aprendizaje profundo, máquinas de vectores de soporte y enfoques híbridos. Los resultados muestran mejoras significativas en la precisión predictiva en comparación con los modelos tradicionales, aunque persisten desafíos relacionados con la calidad de los datos, la replicabilidad y la interpretabilidad de los modelos. También se discuten las principales lagunas metodológicas, las implicaciones prácticas y las futuras direcciones de investigación, con énfasis en el desarrollo de modelos explicables validados en contextos empresariales reales, especialmente para pymes en mercados emergentes.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Abolghasemi, M., Rostami-Tabar, B., & Syntetos, A. (2022). The value of point of sales information in upstream supply chain forecasting: an empirical investigation. International Journal of Production Research, 61(7), 2162–2177. https://doi.org/10.1080/00207543.2022.2063086

Adadi, A., & Berrada, M. (2018). Peeking inside the black-box: a survey on explainable artificial intelligence (XAI). IEEE access, 6, 52138-52160. https://doi.org/10.1109/ACCESS.2018.2870052

Ahmed, S., Chakrabortty, R. K., Essam, D. L., & Ding, W. (2024, December). A switching-based forecasting approach for forecasting sales data in supply chains. Applied Soft Computing, 167, 112419. https://doi.org/10.1016/j.asoc.2024.112419

Aljbour, M., & Avcı, İ. (2024). Sales prediction in e-commerce platforms using machine learning. In J. Rasheed, A. M. Abu-Mahfouz & M. Fahim (Eds.), Forthcoming Networks and Sustainability in the AIoT Era (pp. 207–216). Springer. https://doi.org/10.1007/978-3-031-62881-8_17

Álvarez-Alvarado, J. M., Ríos-Moreno, J. G., Obregón-Biosca, S. A., Ronquillo-Lomelí, G., Ventura-Ramos Jr, E., & Trejo-Perea, M. (2021). Hybrid techniques to predict solar radiation using support vector machine and search optimization algorithms: a review. Applied Sciences, 11(3), 1044. https://doi.org/10.3390/app11031044

Ataei Y., Mahmoudi A., & Reza M. (2020, January). Ordinal Priority Approach (OPA) in Multiple Attribute Decision-Making. Applied Soft Computing, 86, 105893. https://doi.org/10.1016/j.asoc.2019.105893

Atmaja, K. J., Pascima, I. B. N., Putra Asana, I. M. D., & Sudipa, I. G. I. (2022). Implementation of artificial neural network on sales forecasting application. Journal of Intelligent Decision Support System (IDSS), 5(4), 124–131. https://idss.iocspublisher.org/index.php/jidss/article/view/111

Babai, M. Z., Boylan, J. E., & Rostami-Tabar, B. (2021). Demand forecasting in supply chains: a review of aggregation and hierarchical approaches. International Journal of Production Research, 60(1), 324–348. https://doi.org/10.1080/00207543.2021.2005268

Bandara, K., Bergmeir, C., & Smyl, S. (2020, February). Forecasting across time series databases using recurrent neural networks on groups of similar series: A clustering approach. Expert systems with applications, 140, 112896. https://doi.org/10.1016/j.eswa.2019.112896

Barrientos E., Coronel L., Cuesta F., Rico D (2020, marzo). Sistema de administración de ventas tienda a tienda: Aplicando técnicas de inteligencia artificial. Iberian Journal of Information Systems and Technologies, (E27). 677–689. https://n9.cl/qeoor

Bi, X., Adomavicius, G., Li, W., & Qu, A. (2022). Improving sales forecasting accuracy: a tensor factorization approach with demand awareness. INFORMS Journal on Computing, 34(3), 1644-1660. https://doi.org/10.1287/ijoc.2021.1147

Caglayan, N., Satoglu, S. I., & Kapukaya, E. N. (2020). Sales forecasting by artificial neural networks for the apparel retail chain stores: An application. Journal of Intelligent & Fuzzy Systems, 39(5), 6517-6528. https://doi.org/10.3233/JIFS-189115

Carbonneau, R., Laframboise, K., & Vahidov, R. (2008, February). Application of machine learning techniques for supply chain demand forecasting. European Journal of Operational Research, 184(3), 1140–1154. https://doi.org/10.1016/j.ejor.2006.12.004

Chatterjee, S., Chaudhuri, R., Gupta, S., Sivarajah, U., & Bag, S. (2023, November). Assessing the impact of big data analytics on decision-making processes, forecasting, and performance of a firm. Technological Forecasting and Social Change, 196, 122824. https://doi.org/10.1016/j.techfore.2023.122824

Chen, K. (2020). An online retail prediction model based on AGA-LSTM neural network. In Proceedings of the 2020 2nd International Conference on Machine Learning, Big Data and Business Intelligence (MLBDBI) (pp. 145–149). IEEE. https://doi.org/10.1109/MLBDBI51377.2020.00032

Chowdhury, A. R., Limon, G. Q., & Rahman, M. A. (2024). Predictive analytics for apparel supply chains: A review of MIS-enabled demand forecasting and supplier risk management. American Journal of Interdisciplinary Studies, 5(4), 1–23. https://doi.org/10.63125/80dwy222

Güven, İ., & Şimşir, F. (2020). Demand forecasting with color parameter in retail apparel industry using artificial neural networks (ANN) and support vector machines (SVM) methods. Computers & Industrial Engineering, 147, 106678. https://doi.org/10.1016/j.cie.2020.106678

Ganguly, P., & Mukherjee, I. (2024). Enhancing retail sales forecasting with optimized machine learning models. Proceedings of the 2024 4th International Conference on Sustainable Expert Systems (ICSES). IEEE. https://doi.org/10.1109/ICSES63445.2024.10762950

Hyndman, R. J., & Athanasopoulos, G. (2021). Forecasting: Principles and practice (3rd ed.). OTexts. https://otexts.com/fpp3

Ingle, C., Bakliwal, D., Jain, J., Singh, P., Kale, P., & Chhajed, V. (2021). Demand forecasting: Literature review on various methodologies. En Proceedings of the 2021 12th International Conference on Computing Communication and Networking Technologies (ICCCNT) (pp. 1–7). IEEE. https://doi.org/10.1109/ICCCNT51525.2021.9580139

Issaoui Y., Khiat A., Bahnasee, A., & Hassan, O. (2021). An advanced LSTM Model for Optimal Scheduling in Smart Logistic Environment: E-commerce case. IEEE Access, 9, 126337-126356. http://doi.org/10.1109/ACCESS.2021.3111306

Jian, H., Ruan, J. & Sun, J. (2021). Application of Machine Learning Model and Hybrid Model in Retail Sales Forecast. IEEE 6th International Conference on Big Data Analytics (ICBDA), Xiamen, China, 2021, pp. 69-75. https://doi.org/10.1109/ICBDA51983.2021.9403224

Kaneko, Y., & Yada, K. (2016). A deep learning approach for the prediction of retail store sales. En Proceedings of the 2016 IEEE 16th International Conference on Data Mining Workshops (ICDMW) (pp. 531–537). IEEE. https://doi.org/10.1109/ICDMW.2016.0082

Khedr, A. M., & Rani, S. S. (2024, December). Enhancing supply chain management with deep learning and machine learning techniques: A review. Journal of Open Innovation: Technology, Market, and Complexity, 10(4), 100379. https://doi.org/10.1016/j.joitmc.2024.100379

Li, J., Fan, L., Wang, X., Sun, T., & Zhou, M. (2024). Product Demand Prediction with Spatial Graph Neural Networks. Applied Sciences, 14(16), 6989. https://doi.org/10.3390/app14166989

Loureiro, A. L. D., Miguéis, V. L., & da Silva, L. F. M. (2018, October). Exploring the use of deep neural networks for sales forecasting in fashion retail. Decision Support Systems, 114, 81–93. https://doi.org/10.1016/j.dss.2018.08.010

Ma, X., Wang, Z., Ni, X., & Ping, G. (2024). Artificial intelligence-based inventory management for retail supply chain optimization: A case study of customer retention and revenue growth. Journal of Knowledge Learning and Science Technology, 3(4), 260–273. https://doi.org/10.60087/jklst.v3.n4.p260

Makridakis, S., Spiliotis, E., & Assimakopoulos, V. (2018a). Statistical and machine learning forecasting methods: Concerns and ways forward. PLOS ONE, 13(3), e0194889. https://doi.org/10.1371/journal.pone.0194889

Makridakis, S., Spiliotis, E., & Assimakopoulos, V. (2018b, October-December). The M4 Competition: Results, findings, conclusion and way forward. International Journal of Forecasting, 34(4), 802–808. https://doi.org/10.1016/j.ijforecast.2018.06.001

Mustapha, O. O., & Sithole, D. T. (2025). Forecasting retail sales using machine learning models. American Journal of Statistics and Actuarial Sciences, 6(1), 35–67. https://doi.org/10.47672/ajsas.2679

Nasseri, M., Falatouri, T., Brandtner, P., & Darbanian, F. (2023). Applying Machine Learning in Retail Demand Prediction—A Comparison of Tree-Based Ensembles and Long Short-Term Memory-Based Deep Learning. Applied Sciences, 13(19), 11112. https://doi.org/10.3390/app131911112

Omar, H., Hoang, V. H., & Liu, D.-R. (2016). A hybrid neural network model for sales forecasting based on ARIMA and search popularity of article titles. Computational Intelligence and Neuroscience, 2016, Article ID 9656453. https://doi.org/10.1155/2016/9656453

Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., McGuinness, L. A., Stewart, L. A., Thomas, J., Tricco, A. C., Welch, V. A., Whiting, P., & Moher, D. (2021, April). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. International Journal of Surgery, 88, 105906. https://doi.org/10.1016/j.ijsu.2021.105906

Panda, S. K., & Mohanty, S. N. (2023). Time series forecasting and modeling of food demand supply chain based on regressors analysis. IEEE Access, 11, 42679-42700. https://doi.org/10.1109/ACCESS.2023.3266275

Prabu, C. R., Ravindran, R., Varma, K. S. A., Sri, K. S., Rohith, G. S., & Remya, M. S. (2025). Comprehensive Review on Sales

Prediction Models. Procedia Computer Science, 259, 1218-1227. https://doi.org/10.1016/j.procs.2025.04.077

Quiñones-Rivera, H., Rubiano-Ovalle, O., & Alfonso-Morales, W. (2023). Demand forecasting using a hybrid model based on artificial neural networks: A study case on electrical products. Journal of Industrial Engineering and Management, 16(2), 363–381. https://doi.org/10.3926/jiem.3928

Raj, R., Rohit, R., Shahreyar, M., Raut, A., Pournami, P., Kalady, S., & Jayaraj, P. (2022). DeepNR: An adaptive deep reinforcement learning based NoC routing algorithm. Microprocessors and Microsystems, 90, 104485. https://doi.org/10.1016/j.micpro.2022.104485

Ribeiro, M. T., Singh, S., & Guestrin, C. (2018). Anchors: High-Precision Model-Agnostic Explanations. Proceedings of the AAAI Conference on Artificial Intelligence, 32(1), 1527–1535. https://doi.org/10.1609/aaai.v32i1.11491

Rolnick, D., Donti, P. L., Kaack, L.Kaack, H. Kochanski, K., Lacoste, A., Sankaran, K., Ross, A. S., Milojevic-Dupont, N., Jaques, N., Waldman-Brown, A., Luccioni, A. S., Maharaj, T., Sherwin, E. D., Mukkavilli, S. K., Kording, K. P., Gomes, C. P., Ng, A. Y., Hassabis, D., Platt, J. C., Creutzig, F., Chayes, J., & Bengio, Y. (2022). Tackling climate change with machine learning. ACM Computing Surveys, 55(2), Article 42, 1–96. https://doi.org/10.1145/3485128

Sharma, A., Patel, N., & Gupta, R. (2022). Enhancing Predictive Sales Analytics using LSTM Networks and Random Forest Algorithms. https://eaaij.com/index.php/eaaij/article/view/40/40

Sajawal, M., Usman, S., Sanad Alshaikh, H., Hayat, A., & Ashraf, M. U. (2022). A Predictive Analysis of Retail Sales Forecasting using Machine Learning Techniques. Lahore Garrison University Research Journal of Computer Science and Information

Technology, 6(4), 33-45. https://doi.org/10.54692/lgurjcsit.2022.0604399

Seifert, M. (Ed.).(2023). Judgement in predictive analytics. Springer. https://doi.org/10.1007/978-3-031-30085-1

Setiawan, H. (2024). Application of data mining using the support vector machine (SVM) method to analyze fashion retail products to determine trends. Academia Open, 9(1). https://doi.org/10.21070/acopen.9.2024.8581

Smith, C., & Fatorachian, H. (2023). COVID-19 and supply chain disruption management: A behavioural economics perspective and future research direction. Journal of Theoretical and Applied Electronic Commerce Research, 18(4), 2163–2187. https://doi.org/10.3390/jtaer18040109

Smyl, S. (2020, January-March). A hybrid method of exponential smoothing and recurrent neural networks for time series forecasting. International Journal of Forecasting, 36(1), 75–85. https://doi.org/10.1016/j.ijforecast.2019.03.017

Tang, L., Li, J., Du, H., Li, L., Wu, J., & Wang, S. (2022, February). Big data in forecasting research: A literature review. Big Data Research, 27, 100289. https://doi.org/10.1016/j.bdr.2021.100289

Venkataramanan, S., Sadhu, A. K. R., Gudala, L., & Reddy, A. K. (2024). Leveraging artificial intelligence for enhanced sales forecasting accuracy: A review of AI driven techniques and practical applications in customer relationship management systems. Australian Journal of Machine Learning Research & Applications, 4(1). https://sydneyacademics.com/index.php/ajmlra/article/view/77

Wu, Y., Meng, X., Zhang, J., He, Y., Romo, J. A., Dong, Y., & Lu, D. (2024, February). Effective LSTMs with seasonal-trend decomposition and adaptive learning and niching-based backtracking search algorithm for time series forecasting. Expert Systems with Applications, 236, 121202. https://doi.org/10.1016/j.eswa.2023.121202

Yee Lin M. L., Hao T. M., Mukred M., & Nofal M. I. (2025). Recommended machine learning and deep learning models in improving sales forecasting across diverse industries: A review analysis. En Proceedings of the 2025 1st International Conference on Computational Intelligence Approaches and Applications (ICCIAA) (pp. 1–8). IEEE. https://doi.org/10.1109/ICCIAA65327.2025.11013390

Zamani, E. D., Smyth, C., Gupta, S., & Dennehy, D. (2023). Artificial intelligence and big data analytics for supply chain resilience: A systematic literature review. Annals of Operations Research, 327(2), 605-632. https://doi.org/10.1007/s10479-022-04983-y

Zhang, G., Eddy Patuwo, B., & Hu, M. Y. (1998, March). Forecasting with artificial neural networks: The state of the art. International Journal of Forecasting, 14(1), 35-62. https://doi.org/10.1016/S0169-2070(97)00044-7

Zhang, C., Zhou, Z., & Wu, R. (2024). Analyzing and predicting financial time series data using recurrent neural networks. Journal of Industrial Engineering and Applied Science, 2(4), 15–21. https://doi.org/10.5281/zenodo.12786717

Zhang B., Tseng, M.-L., Qi, L., Guo, Y., & Wang, C.-H. (2023, February). A comparative online sales forecasting analysis: Data mining techniques. Computers & Industrial Engineering, 176, 108935. https://doi.org/10.1016/j.cie.2022.108935

Zurita, J. (2024). Evaluación de la precisión en el pronóstico de la inflación en Bolivia: Random Forest y árboles de decisión vs. ARIMA. Revista Compás Empresarial, 15(39), 52–80. https://doi.org/10.52428/20758960.v15i39.1227

Publicado

2025-07-31

Cómo citar

Romero Izurieta, R., Espinoza Roca, L. R. ., & Mantilla Buenaño, G. . (2025). Inteligencia Artificial en el pronóstico de ventas: Revisión sistemática de la literatura científica (2018-2024). Yachana Revista Científica, 14(2). https://doi.org/10.62325/10.62325/yachana.v14.n2.2025.1006

Número

Sección

Área de Ciencias Económicas y Administrativas